Machine learning on Web documents
نویسنده
چکیده
The Web is a tremendous source of information: so tremendous that it becomes difficult for human beings to select meaningful information without support. We discuss tools that help people deal with web information, by, for example, blocking advertisements, recommending interesting news, and automatically sorting and compiling documents. We adapt and create machine learning algorithms for use with the Web’s distinctive structures: large-scale, noisy, varied data with potentially rich, human-oriented features. We adapt two standard classification algorithms, the slow but powerful support vector machine and the fast but inaccurate Naive Bayes, to make them more effective for the Web. The support vector machine, which cannot currently handle the large amount of Web data potentially available, is sped up by “bundling” the classifier inputs to reduce the input size. The Naive Bayes classifier is improved through a series of three techniques aimed at fixing some of the severe, inaccurate assumptions Naive Bayes makes. Classification can also be improved by exploiting the Web’s rich, human-oriented structure, including the visual layout of links on a page and the URL of a document. These “tree-shaped features” are placed in a Bayesian mutation model and learning is accomplished with a fast, online learning algorithm for the model. These new methods are applied to a personalized news recommendation tool, “the Daily You.” The results of a 176 person user-study of news preferences indicate that the new Web-centric techniques out-perform classifiers that use traditional text algorithms and features. We also show that our methods produce an automated ad-blocker that performs as well as a hand-coded commercial ad-blocker. Thesis Supervisor: David R. Karger Title: Associate Professor
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملAnalyzing new features of infected web content in detection of malicious web pages
Recent improvements in web standards and technologies enable the attackers to hide and obfuscate infectious codes with new methods and thus escaping the security filters. In this paper, we study the application of machine learning techniques in detecting malicious web pages. In order to detect malicious web pages, we propose and analyze a novel set of features including HTML, JavaScript (jQuery...
متن کاملGeoreferencing Semi-Structured Place-Based Web Resources Using Machine Learning
In recent years, the shared content on the web has had significant growth. A great part of these information are publicly available in the form of semi-strunctured data. Moreover, a significant amount of these information are related to place. Such types of information refer to a location on the earth, however, they do not contain any explicit coordinates. In this research, we tried to georefer...
متن کاملPascal Challenge The Evaluation of Machine Learning for Information Extraction
If the Semantic Web is to utilise the vast number of documents available on the WWW it requires an effective way to automatically annotate those documents, enabling the extraction of relevant information. The Pascal Challenge on the Evaluation of Machine Learning for Information Extraction provided a common basis on which it assess the relative performance of multifarious machine learning syste...
متن کاملLearning to Query the Web
The World Wide Web (WWW) is filled with "resource directories"--i.e., documents that collect together links to all known documents on a specific topic. Keeping resource directories up-to-date is difficult because of the rapid growth in online documents. We propose using machine learning methods to address this problem. In particular, we propose to treat a resource directory as a list of positiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004